Optimized, unequal pulse spacing in multiple echo sequences improves refocusing in magnetic resonance.
نویسندگان
چکیده
A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.
منابع مشابه
Enhanced refocusing of fat signals using optimized multipulse echo sequences.
Endogenous magnetic resonance contrast based on the localized composition of fat in vivo can provide functional information. We found that the unequal pulse timings of the Uhrig's dynamical decoupling multipulse echo sequences significantly alter the signal intensity compared to conventional, equal-spaced Carr-Purcell-Meiboom-Gill sequences. The signal increases and decreases depending on the t...
متن کاملThe Optimization of Magnetic Resonance Imaging Pulse Sequences in Order to Better Detection of Multiple Sclerosis Plaques
Background and objective: Magnetic resonance imaging (MRI) is the most sensitive technique to detect multiple sclerosis (MS) plaques in central nervous system. In some cases, the patients who were suspected to MS, Whereas MRI images are normal, but whether patients don’t have MS plaques or MRI images are not enough optimized enough in order to show MS plaques? The aim of the current study is ...
متن کاملOptimized three-dimensional fast-spin-echo MRI.
Spin-echo-based acquisitions are the workhorse of clinical MRI because they provide a variety of useful image contrasts and are resistant to image artifacts from radio-frequency or static field inhomogeneity. Three-dimensional (3D) acquisitions provide datasets that can be retrospectively reformatted for viewing in freely selectable orientations, and are thus advantageous for evaluating the com...
متن کاملVerse - Space
Introduction Use of nonselective refocusing pulses shortens the echo spacing and the echo train duration, and then improves the image sharpness in SPACE [3, 4] imaging. However, the nonselective refocusing pulses limit the application of slab selective acquisition. To overcome this limitation, a dual echo-spacing technique [1] has been presented before, using a combination of selective excitati...
متن کاملSelf-refocused adiabatic pulse for spin echo imaging at 7 T.
Spin echo pulse sequences are used to produce clinically important T(2) contrast. However, conventional 180° radiofrequency pulses required to generate a spin echo are highly susceptible to the B(1) inhomogeneity at high magnetic fields such as 7 Tesla (7 T), resulting in varying signal and contrast over the region of interest. Adiabatic 180° pulses may be used to replace conventional 180° puls...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 131 20 شماره
صفحات -
تاریخ انتشار 2009